Steering Column
Wheel Splines
Cowl
Lock
Indicator/turnswitch, Cancelling Striker and Cowl Positioning
Repairs
Column/Rack Universal Joint
Column/Rack Alignment
Originally the column was solid i.e. non-collapsible and did not have a steering lock or ignition switch. RHD and LHD for all markets used the same components which consisted of a separate inner and outer. Various non-North American countries got steering locks at different times between 1962 and late 69, and hence had different inners and outers, which also differed between RHD and LHD. In 1967 North America got a collapsible column for the Mk2, with what Clausager describes as 'an easily defeatable' steering lock. In 1970 non-North American inners and outers changed. There were still locking and non-locking variants, and hence RHD and LHD locking variants. North America got a different column with improved, side-entry lock. From 1st January 1971 the UK required a steering lock, so a column with a front-entry lock was fitted to cars for all markets except North America. For the 1972 model year in non-North American markets the column changed to a collapsible assembly rather than separate tubes and shafts. V8s had a full energy-absorbing column from the outset, changing model number for RB cars, and only then did all models get the same full energy-absorbing column.

 Wheel Splines:

According to Clausager four different types of column and wheel hub splines were used over the years, and are not interchangeable. However he gives the four types as 62 to 67, 67 to 69, 70 to 76, and 77 on - model years where appropriate. The Parts Catalogue doesn't entirely bear that out, but it has its own gap in the information. There are two sections for 4-cylinder columns and wheels - one described as 'Not North America or V8' and the other as 'North America collapsible type'. But with Clausager stating that the North American collapsible type wasn't used until the Mk2 of 1967, which if correct and because there are no parts listed for North America before that, indicates that all models used the same types for the Mk1, and that is what I have assumed. The Parts Catalogue is also quite clear that the same spoked wheel AHH9284 and columns were used in non-North American markets until the start of the 1970 model year. So whilst North America used one type for the Mk1, and another type until the start of the 1970 model year, other markets used the same type from the start of production to the start of the 1970 model year. Still with the wire-spoked wheel, although this wheel has a different part number AHH 9825, implying it was different to the non-North American parts. To my way of thinking this makes all markets for the Mk1, and non-North American to the start of the 1970 model year using the first variant, and North America Mk2 to the start of the 1970 model year using the second variant.

From 1970 to 72 the wheel for all markets had flat alloy spokes with five holes in each, changing to slots for the 73 model year because the holes trapped fingers. But only a few months later the slots were changed to depressions as the slots trapped dangly jewellery! V8s had the side-entry lock on the full energy-absorbing column, and the wheel with depressions for the whole of production. From the start of rubber bumper production all cars regardless of market got the full energy-absorbing column (crushable outer as well as collapsing shaft) with side entry lock. The components then remained unchanged until the end of the 76 model year. As the wheels and columns have different change points, and the Parts Catalogue indicates the wheels were common to all markets, V8 and 4-cylinder, they must have been compatible, so this is the third variant of splines - 1970 to 1976. I've been able to compare a 73 roadster and a 75 V8, and whilst the wheels fit on each others splines the taper seems to be slightly different, even though the change-points indicate they should be the same. With the 'right' wheel pushing the wheel down onto the taper locks it, whereas with the 'wrong' wheel even pushed down it wobbles from side to side very slightly, which is probably because the V8/RB column is almost 6mm wider. 1975 Jubilee GTs may have had an all-black wheel with a gold MG horn-push logo. Other cars built during the 1975 Jubilee year had the metal-finish spokes with the gold logo.

For the 77 model year the column and wheel (now with four rubber-covered spokes) changed, again common to all markets, giving the fourth variant - 1977 on. However this is more to do with completely different arrangements for cancelling the indicators and sounding the horn, the splines and threads appear to be the same. The MG logo was originally dark grey, then silver as standard. UK 1980 LE models had the standard wheel but with a red MG logo. North American Limited Edition models of 79 and 80 had a wheel similar to the 70 to 72 but with three holes instead of five, finger-trapping perhaps no longer being considered a hazard.

October 2013:
I have found the following list concerning North American cars which agrees with the change-points above:

YearsTypeSplinesThreadSocket
62-67  Mk1 wire spoke3/4" by 4811/16" X 27 TPI1 5/16" or 34mm
68-69 Mk2 wire spoke5/8" by 369/16" X 27 TPI1 1/16" or 27mm (to be confirmed)
70-76 Flat alloy spoke11/16" by 369/16" X 18 TPI1 1/16" or 27mm
77-80 Plastic spoke and NA LE11/16" by 369/16" X 18 TPI1 1/16" or 27mm
However markets other than North America probably continued with Type-1 until 1970 and so only have three types. Note that although the splines and thread are the same the column diameter of the Type 3 increased for V8 and rubber bumper cars, and the cancelling cam is different. Note also that Type-3 and Type-4 splines and thread are identical, but the steering wheels for all markets changed in 1977 to one with the indicator cancelling arrangement integral to the wheel, instead of using the cam on the column. So whilst the steering wheels are interchangeable on the column, the Type 3 wheel will not cancel the indicators on a Type-4 column and switch-gear.

Interestingly the 'collapsible' columns before the full energy-absorbing allow the shaft to move freely up and down within the inner. So in any frontal impact an unbelted occupant could push the wheel forwards, collapsing the inner and crushing the switchgear, allowing more travel before hitting something solid but little energy absorption i.e. deceleration. If the collision is so severe as to move the rack rearwards the steering wheel and inner shaft would actually move towards the occupant, possibly allowing even a belted driver to hit it, although that would collapse the inner shaft. The later full energy-absorbing columns are different in that the inner cannot move in and out of the outer. An unbelted driver will probably suffer greater injury from this type of column as the wheel cannot be pushed forwards until there is sufficient force (from the driver!) to deform the structure the column is bolted to. If the rack moves backwards then the inner will shear with very little force, and no energy absorption as before. It's only if the toe-board comes back far enough to hit the bottom of the column outer that the mesh construction of the outer will do its energy-absorbing stuff, and prevent the wheel moving towards the driver. But it's difficult to see how that could happen, except possibly in a V8 where the engine moves backwards. If the impact is severe enough to deform the toe-board, even with a V8, it's difficult to see how the energy absorbing column is going to make much difference to the injuries of the driver, given that this 130kph/75G impact of an MGB with a solid concrete wall resulted in no intrusion into the cabin.

Cowl: August 2019

Two plastic halves covering the indicator switch on CB 4-cylinder cars (one stalk), indicator and wiper stalks and ignition switch on RB models and all V8s. Where there is only the one stalk the cowl is much smaller and the two halves - top and bottom - are separated with four easily accessible screws going up from the bottom half into threaded sockets in the top half. With the later version where there are two stalks and the ignition switch the cowl is much longer as well as broader and extends under the dash and binnacle, and the screws are trickier. The two halves are one each side, with two easily accessible screw going through the left-hand half into the right-hand, and two more one in each half going into brackets on the column outer. This second pair are shrouded by the binnacle and dash as it curves round the cowl, and there is no direct access with a screwdriver. A PO had obviously removed and not refitted them on my V8 - thankfully - so the following is only a suggestion: It may be possible to bend a cross-head screwdriver (about 2cm from the end measuring the depth of the holes in my cowls) to a right-angle and get at them with that. Even then the space available is so minimal that you may have to feed the screwdriver in at an angle, and will need patience to undo the screw probably several turns a quarter-turn at a time.

Failing that you may have to drop the steering column by undoing the three column to dash bolts - not the three toe-board bolts. If you do that, be very sure to note where any packing is present between column and dash, as that is part of column UJ alignment. Be sure not to let the column 'hang', only lower it enough to get at the screws, then temporarily refit it to support its weight.

The toe-board bolts just clamp a plate and rubber seal to the toe board, with a sliding fit to the column, they are not clamping that end of the column in position. Normally one would expect the seal to be pressing on the column with equal force all the way round, which will help keep that end of the column in the correct position when the upper part is disconnected or slackened. But just in case it is pressing on one side more than another, e.g. if those bolts were tightened before the column was fully aligned, it might be an idea to slacken and retighten those first to even out any forces, and only then undo the column to dash bolts.

On Vee the position of the column is such that the right-hand screw is shrouded more than the left-hand, so it's possible that just by slackening the column to dash bolts, you may be able to slide the column first one way then the other for the best access to each in turn. Note the positioning first, and put it back to that when you finish. If in doubt you may need to check the alignment of the steering column UJ.

Even with the screws out of the two-stalk type the difficulties continue, as both halves need manipulation to get them off over the ignition switch and the ends of the stalks, they don't just drop free as with the single-stalk type. Probably why the books say to remove the column complete with cowl and switches, which would be right pain if all you wanted to do was adjust the horn brush! In fact the book says to remove the column complete with the steering wheel as well as the cowls and switches, which is stupid if you subsequently need to remove the wheel!

Steering Lock: December 2014

See also Ignition Switch
Replacement
What lies inside

Types used:

Dates
Chassis No.
Markets
Lock
Switch
Comments
Switch Style
May 62 - Aug 68101-152454Germany, Finland (Oct 67), Austria (Jan 68)13H418027H6237Use BMK2259Spades on switch
Aug 68 - Dec 70152455-231338Above plus France (Sep 69)13H486227H6237Use BMK2259Spades on switch
Dec 70 - Feb 72230617-275645Not North America or SwedenBHA5709Use BMK2259Combined lock and switch
Feb 72 - Sep 74275646-361000As aboveBHA521537H7708Use BMK2259Spades on switch
May 62 - Sep 74101-361000As aboveBMK225937H5934Spades on switch
Sep 74 - end360301-onAs aboveBHM7056BHA5398Note 1Lock with switch, multi-plug
V818G8905Note 2Lock with switch, bullets
 
May 62 - Aug 68101-152454Sweden13H418027H6237BMK2259Spades on switch
Aug 68 - Dec 70152455-231338As above13H486227H6237BMK2259Spades on switch
Nov 67 - Sep 69138401-187840North AmericaBHA471537H4114Lock and switch NLA
Sep 69 - Aug 71187211-258000North America, Sweden (Dec 70)BHA5050BHA5056AlternativesLock and switch NLA
Aug 71 - Aug 72258001-296000As above18G8906Combined lock and switch
Sep 69 - Aug 71187211-258000As above18G8901BHA5070Lock and switch NLA
Aug 71 - Aug 72258001-296000As above18G8905BHA5070Lock with switch, bullets
Aug 72 - Aug 73294251-324942As above18G8984BHA5128Bullets on wires
Aug 73 - Aug 73324943-325855As above18G9064BHA5288Lock and switch NLA
Aug 73 - Aug 73325856-328800As above18G9118BHA5288Lock with switch, multi-plug
Aug 73 - Jun 76328110-410000As above18G9119BHA5292Multi-plug
Jun 76 - end410001-onAs above18G9119BHA5069Multi-plug

Note 1a: Lock is now BHM7144 complete with switch. This is the North American lock and switch with extra grey and purple/pink wires, the original may have the grey but not the purple/pink. The remaining four wires should connect directly to the same colour wires in the main harness, but double-check before plugging in. The grey and purple/pink should not have corresponding wires in the other half of the UK multi-plug.
Note 1b: Switch no longer available, use BHA5292. Again this is the North American version as above.
Note 2: Prices for replacement lock with switch for the V8 varies from £31 to £120! If only the switch has failed it may be worth trying BHA5292 as they can be had for little more than a tenner, and if it fits it saves having to cut off the lock which cannot be done by drilling up from below like it can with the earlier side-entry locks. You would need to cut off the multi-plug, discard the grey and purple/pink wires, and solder bullets to the remaining brown, white/green, white and white/red wires.

Lock replacement: Note this process is only suitable for chrome-bumper 4-cylinder cars as the thread end of the bolt can be accessed from below. On V8 and rubber bumper cars the lock covers this and the bolts have to be removed from the head end, which almost certainly needs the column to be dropped.

January 2021: But before jumping into lock replacement if the key won't come out, Crispin Allen who was faced with having to remove the column as his car is a late-model RB, tried removing the switch from the lock first ... and it was the switch that was causing the problem! Far easier to deal with, and stripping, cleaning and lubricating the switch mechanism with Vaseline was all that was needed. But if you have to proceed and are only replacing the lock, or the switch, and not both as a unit check right at the start that the new and old components do fit together and that the lock operates the switch correctly - before fitting and finding it doesn't!

When Bee came to me there was only one ignition key so I had a spare cut from that. It worked, but over the years as the lock has worn on the rare times I use it I have found that it is very difficult to turn the lock all the way back and remove the key as normal. This earlier 'front-entry' lock needs a twist-push-twist-pull to turn the accessories off and remove the key, but this key wouldn't do that, it would come out too soon. As well as leaving the ignition switch then capable of being operated with a screwdriver, I cannot get the 'good' key in, so have to persevere with the 'spare' key - which fortunately does go back in, wiggling and turning gently until finally the lock does fully return, the key comes out as it should, and the 'good' key then works again. OK, so don't use the spare key, and get another one cut and hope that would work. Well the 'good' key is itself a copy and not original to the car or even of the same type, so what with that and 40 years of use on the original lock I decided to replace the lock now rather than wait until it properly jams, which is almost bound to be at an inconvenient time. Vee has a side-entry lock with a push-button release.

The original lock is quoted as being BHA5215 (chrome bumper Feb 72 on), with BMK2259 being a universal replacement for that and others. Googling BHA5215 showed loads of suppliers, ranging in price from £59 to (gulp) £107. The good news was that I wanted to get mine from Leacy's as part of a shopping list it was worth going to collect and they were the cheapest. The bad news was they were out of stock! As the Irish shopkeeper said, "Well when we don't have them in stock ours are cheap too". So I looked up BMK2259 at Leacy's, the good news being they were in stock, the bad news being they were (even bigger gulp) £154! So I rang them, and apparently those part numbers include the ignition switch, and it was the switches that were unavailable for the BHA5215 version. They have the bare locks listed separately as BHA5215X, but only on their stock system, not on the website. So he looked up those, the good news was they had them in stock, and the even better news was that minus the switch they are only £43!

February 2021:
John Hall of Queensland Australia happened to post a picture of the switch terminals on his RHD 73 and I noticed the switch had 'ears' with two screws that looked like they were attaching it to the front of the lock body, instead of being a circular switch slotting into the lock and secured with a single grub-screw from the side as on Bee. Going back to the Parts Catalogue I can see that out of five drawings (have to take drawings with a pinch of salt though) of switches and locks one is shown with mounting ears and the rest are circular, and from there it gets rather complicated trying to work out which type was used when, but all that can only be of academic interest. Even when the Catalogue was published 50 years ago there was a single lock and switch used as a replacement for all CB types (lock BMK2259 with switch 37H5934), and what is on your car now may already be a replacement. Suppliers don't help as they are neither consistent in the part numbers they use between each other and in some cases not even on different pages from one supplier. The crucial thing is that if only intending to replace either lock or switch, you will need one that is compatible with what you have now, so Caveat Emptor. For RHD 4-cylinder RB cars it does seem that only one lock and switch was used throughout - BHM7056 and BHA5398 and this is the completely different side-entry lock in the cowl. All V8s use 37H8905 for both lock and switch, again side-entry.

These locks have special shear-bolts clamping them to the column. They may still have the heads attached which will seem odd. Many years ago I queried the fact that on my Mum's new Mini they still had the heads, and shouldn't they have sheared off when being tightened? Apparently not, they are supposed to shear if anyone attempts to undo them. However the heads were missing from Bee's. I was thinking that I would have to remove the steering column as I didn't want to use an angle-grinder in the cabin. But having a look I could see that the bolts are angled downwards and to the drivers side of the car, so conveniently placed for drilling along the length of the threaded part. Furthermore the shanks of the bolts stopped about 1/4" short of the hole they were in, which makes a useful drill guide, so drill in-situ it was. However! The first thing I had done was to test both keys operated the new lock and the bolt smoothly, don't want to wreck the old lock then find the new one doesn't work.

I needed to move the indicator stalk sub-harness out of the way, and unplugging it from the main harness seemed easier than removing the cowl and the switch from the column. However the black rubber moulded plugs and sockets stick together quite well and it was difficult to get a good grip on both halves. Then I had the idea of using external circlip pliers to lever the two halves apart, which took about one second!

With that out of the way I decided to remove the switch from the back of the old lock, so that vibration etc. from drilling didn't damage it. There is a small screw going downwards at an angle from the drivers side, through the body of the lock and into the switch. A little fiddly to get at, I used a hex drive screwdriver point in a very small ratchet. It's small, don't lose it. With that out I eased the rubber boot off the lock and the switch came away. I then offered up the switch to the new lock - there is a key and key-way that has to be aligned - and checked that with the battery cut-off switch back on the accessories, ignition and cranking all worked. Again you wouldn't want to complete the installation to find it didn't.

I decided to use a 4 or 5mm drill to start with, even though the threaded hole is about 6 or 7mm, as a smaller drill goes through easier, then its hole acts as a guide for the larger drill. Drilled first one screw then the other with the small then the large drills until going by the depth I reckoned I was just past the join of the two halves that were clamped around the column. By now the lock was moving back and fore slightly round the column, tried levering against the column tube with a pry-bar, but not too hard. Drilled some more until I was sure the large drill was fully past the join, levered again and it fell off. It really didn't take me much more than an hour. I had managed to drill right up the middle of one bolt, and only slightly off to one side of the other. Note that this can only be done with the earlier front-entry locks mounted lower down the column, not the later side entry accessed through the cowl as the bolts are in line with the lock instead of being at right-angles to it.

Nothing more to do except position the new lock - which is a Lowe and Fletcher just like the original - onto the column, and do up the bolts no more than finger-tight as again I didn't want to complete the installation i.e. fully tighten them until I was sure everything worked. The clamp part has an offset hole, which seems to go to one end of the lock.

Fitted the switch into the back of the lock and inserted the screw ... and the switch came back out again. Had a couple of goes, but it still wouldn't go into the matching hole in the switch body, and I was beginning to think that the alignment was wrong. But with the screw going in partly from above with all the wiring there it wasn't that easy to hold the switch into the lock with one hand while positioning and turning the screw with the other. So I slackened the lock clamp bolts sufficiently for the lock to hang down which put the screw at a much more convenient horizontal angle, and it went straight in. Again tested the operation of the switch with both keys and all was well, so repositioned the lock and did the bolts up finger tight again. This time I turned the column, keys out, so that the bolt engaged and locked the steering, then waggling the wheel to take the load off the bolt check the keys retracted it, again all good. So final tightening of the bolts, and find the bolt heads are 13mm. They are also at an angle, so whilst one is easily accessible from below, the other is virtually on top of the column. Fortunately I have a set of swivel-head combination metric ratchet-ring spanners, and the 13mm one does the job. Not enough leverage to shear the top one, which I wouldn't attempt with the ratchet ring anyway, and although I could get a standard socket on the lower one I just do them up 'tight' but not too tight. I'll leave them like that for the time being to check all is well, with a view to increasing the tightness later on.

What lies inside: Someone on the MGOC forum mentioned recently that when their key barrel fell out of the lock they drove it for some time using a screwdriver to turn the innards. It struck me that with a steering lock that might have compromised the locking mechanism, and you wouldn't want it to engage when driving along! I'd (of course) still got the faulty lock I replaced as above, and as it wasn't going to be any use for anything else decided to investigate how it worked.

The bottom line is that the barrel assembly turns a plastic cam, which as well as turning the ignition switch proper also lifts the lock out of engagement. So even with no barrel the cam has disengaged the lock once the ignition is on, and although there is no longer a spring detent to prevent the switch coming back by itself, if it does so hopefully it will cut the ignition before the lock engages! Still not a good idea to drive without a barrel though, as it is part of the barrel that positively prevents the lock coming back into engagement until you have withdrawn they key, as described here.

Getting in is tricky. There seems to be a 'lid' over the innards, with a couple of dimples that looked like they might have been filled with something to hold it in place. The metal is very soft so easily drilled, and eventually the lid levered off, leaving a side piece inside the lock. It was only afterwards that I discovered a tiny-tapered pin in the side of the lock that was actually what was holding the lid in place. That needed to be drilled out as well, but as the pin is hard and the metal around it soft eventually I had drilled round it and could pull it out with pliers, and the remaining part of the lid came out.

At that point the barrel assembly was moving slightly in the lock body, I couldn't see what was holding it in (the key was inserted), and eventually 'persuaded' it out by tapping with a cold chisel and hammer on a suitable projection. That came out, leaving two plastic components inside - a blue one carrying the metal locking peg that engages with a slot in the column shaft, and a white cam that operates the switch as well as lifting the blue part with the locking peg out of engagement with the steering column as the key is inserted and turned.

It looked like the blue part should just push out, but the edge of the peg that engages with the column shaft had peened over very slightly which made that part wider than the close-fitting slot, and needed a bit more persuasion. After that the white cam came out as well.

That allows one so see how it is the white cam that operates both the switch and initially disengages the lock, but there is another more important aspect to keeping the lock disengaged.

There is a sliding rod on the barrel assembly that is pushed into a recess in the blue part once the key has been inserted and turned and the lock is disengaged, and keeps it disengaged irrespective of what the white cam does after that. When switching off and removing the key it's only when one has gone through the turn-push-turn-pull process on this version of the lock and the key starts coming out of the barrel that this rod is withdrawn from the blue part, and the locking peg drops onto the column shaft or into its recess with a definite click. So the barrel assembly is fundamental to keeping the lock disengaged once the ignition key has been inserted and turned. The main function of the white cam as far as the lock is concerned is just the initial disengagement, the fact it can also keeps the lock disengaged once the switch has been turned if the barrel is removed is only secondary. In fact the sliding rod holds the blue part higher than some parts of the white cam, and whilst the cam will prevent the locking peg fully engaging with the column, without the barrel it does allow it to drop slightly. So depending on how much clearance there is the peg could catch slightly on the shaft slot as the steering is turned.

 Indicator/turn Switch and Cowl Positioning August 2015:

If fitting or replacing a column on chrome bumper cars i.e. without the full energy-absorbing column (i.e. not V8s, and North America may have got them earlier than the UK) the column outer has to be positioned correctly for the indicator/turn switch and cowl. Note that the position of the inner and hence the steering wheel on all cars, and the cancelling striker on Mk1 cars, is determined by the rack being bolted to the front cross-member. The column outer and hence the switch and horn brush and cowl, can slide up and down over the inner, i.e. relative to the steering wheel, and is supported by two U-clamps in brackets, one under the edge of the dash and the other under the heater shelf. To adjust the position of the column outer slacken both these and slide the outer up and down to suit. Correct positioning depends on whether you have a Mk1 or a Mk2:
  • On Mk1 models the cancelling striker position is fixed, but there is a small amount of variability in the position of the switch on the outer. Position that centrally within it's range of movement, then clamp the outer such that the switch fingers are correctly aligned with the cancelling striker.
  • On Mk2 models the switch goes in a fixed position on the outer, set by a 'lump' on the switch body that sits in a cut-out in the tube, and there is a large range of adjustment in the position of the cancelling striker on the column inner. In this case the column outer position is determined by the relationship between the column cowl and the back of the wheel. The cowl has a flange that should fit neatly inside the back of the wheel, but not so far that the back of the wheel rubs on the base of the flange. With that set correctly, adjust the position of the cancelling striker to suit the position of the switch fingers.
At the base of the column outer there should be a concertina tube to seal the hole in the bulkhead, over a range of column outer positions.

Note that even slackening these clamps may well disturb the column and rack UJ alignment, which should be checked afterwards.

With the later full energy-absorbing column the relationship between inner and outer and hence the switches, striker, horn brush, cowl and steering wheel are all fixed within the column.

 Repairs:

The original solid and early collapsible columns have upper and lower bushes which wear and can be an MOT failure. The later full energy-absorbing columns use a ball-bearing at the top and apparently at the bottom which don't seem to suffer from the same wear problems. As far as the UK goes columns prior to the 1972 model year use upper bush GSV1095. For the lower felt bush columns without steering lock use 17H6565, and those with the lock use 13H569. The intermediate collapsible column from 1972 until the end of chrome bumper production (but not V8s) use upper bush MGP1050P. 4-cylinder collapsible and full energy absorbing columns as well as all V8s use lower bush MPB1002 which is quite challenging to replace. This has been discussed several times on the MGOC forum and pictures and descriptions, and dealing with failed shear pins, have been pulled together here. Some European markets had column locks on Mk1 cars and so had different columns. North America had different columns - with locks - from the start of Mk2 production. Only from the start of rubber bumper production did all markets get the same energy-absorbing column. The remainder of this section relates to this full energy-absorbing column.

Vee's steering wheel has always had a bit of rotational play in the column. At about 6-7mm it is a good bit less than the UK MOT limit of 13mm (and a whole lot less than the 30mm specified in my Toyota Celica manual!) but I still didn't like it, for one thing it rattles over some surfaces. As well as the rotational play the steering lock has never worked in my ownership, so I was wondering if I would be able to do anything about that. The car also had a fuel pump short before my time (as had Bee and two other cars I have worked on, all with fuses now!) so the brown and white were damaged. The white only very slightly there (much worse elsewhere) but the brown has had the bullet connector for the switch harness cut out altogether and the wires spliced together. It's had various electrical bits added before my time also connected to this splice, and when I added a horn relay I added one more to it (at least mine was brown). I'd also had an alarm installed, and the fitter soldered his wires to the 12v and indicator wires on the switch side of the multi-plugs (easier to get at) so with the repairs and additions it was all a bit of a mess round the column - another opportunity.

First job was to remove the upper UJ clamping bolt, so the column shaft can be pulled out leaving the UJ behind. It's worth mentioning here that although my roadster has just a notch on the column shaft, and a groove running all the way round the rack shaft meaning the two shafts can be reassembled in any orientation which seems to be the norm, both the V8 shafts only have notches, so the UJ can only be installed in one position on both shafts - strange, but true. Loosen the other bolt right off while there is still some support from the other shaft, but leave the bolt in position so the UJ stays on the rack shaft, and the nut on the bolt a few threads so the bolt doesn't fall out!

Steering wheel comes off with the usual method. This makes it much easier to get the two halves of the cowl off, especially as the additional screws at the bottom, handily (not!) covered by the dashboard, were removed and not refitted by a PO. This is why the book says to remove the column complete with cowl and switches, which would be right pain if all you wanted to do was adjust the horn brush! In fact the book says to remove the column complete with the steering wheel as well as the cowls and switches, which is stupid if you subsequently need to remove the wheel. Unscrewed the column switches and left them dangling. At that time I couldn't see how to remove the ignition switch from the steering lock so had to cut the splice in the brown, and the alarm wire. The other ignition switch wires are on bullets, rather than a multi-plug like the column switches.

When it came to undoing the three toe-board bolts they were only finger-tight, and when I got them all out (the top one is tricky, needing two 3/8" wobble extensions) the plate wasn't attached to the column anyway, not just loose but flopping all over the place and falling right off when I finally removed the column! The hole in the plate is quite a bit bigger than the end of the outer tube it fits over, so there is no way it can align the bottom of the column to the UJ, which some say it does, but more of that later, the upshot is that simply slackening the three toe-board bolts should be all that is required to pull the column out, and leave the plate and rubber seal in-situ - much easier than completely removing all three bolts.

When I undid the upper bolts and started trying to pull the column out I could tell the lower half of the inner was staying where it was, even though I had removed the UJ bolt. I realised I would have to lever it out from inside the engine compartment so would need to support the wheel end of the column on some cord while I did so - of course no cord within reach! So I tried to put one of the upper bolts back in but even though the column bracket is slotted it was too far back to get any bolts in. Took quite a bit of pressure pushing the column down towards the toe-board against what seemed like spring pressure to get one in. When I finally got the column out of the car I found I could pull the bottom half completely out as the shear pins (actually injection moulded plastic) had done just that - hence the rotational play.

  There is a spring at the bottom of the lower half, pressing back against the lower bush in the outer, and forwards against a circlip on the inner shaft, which is effectively trying to push the shaft out of the bottom of the outer all the time. Ordinarily the shear pins mean it is pulling on the upper half of the shaft, and the upper bearing on that is pulled down into the upper end of the column, as well as being retained by another circlip. That's why I had trouble temporarily getting an upper bolt back in - I was having to compress that spring by pushing the column towards the toe-board far enough to get an upper bolt in, and it's quite a hefty spring! As to when and how the pins had sheared, I don't know.

With the column finally out there is a plastic sleeve wrapped round the lower half of the column, covering the collapsible mesh section. Glued or heat-bonded with five blobs down the edge I cut through the bonds with a sharp knife, and can now see the shaft through the mesh. With the lower half of the shaft pulled out I can see the remains of the injection moulding process in two places on the upper/inner half of the shaft, and four 'nubs' of plastic sticking out of four holes (two each side) in the lower/outer part. I also find that with the lower half of the shaft out, the free end of the upper half is free to flap about inside, and in some positions the steering lock (key out) is catching, but when held centrally it is free. So I wonder if it has been attacked by thieves before my time (apparently if you don't turn the wheel to engage the lock when you have removed the key, they can wrench the wheel round and as the locking pin drops into the hole the momentum snaps it off). But later on when I have been working on the column I find the lock engaging with both parts fitted, and has to be released with the key, so maybe the locking pin is whole but just sticky. I do find the ignition switch slathered in oil, maybe squirted in to try and get the lock working. Never use oil or grease in a lock, only graphite powder.

  With the column on the bench I espy a tiny grub-screw under the switch, which when unscrewed to flush with the lock housing allows the switch to be withdrawn. If you are going to be leave the switch out for any length of time screw this back in to prevent it falling out and getting lost. One oddity with the ignition switch is that with the various work that has been done on the wiring there is black insulation tape wrapped round it, which I have to remove to expose the alarm wire soldered to the brown, and I find a purple/pink wire. Now this is only used on North American spec cars, for the anti-runon valve. So whether the car has had an American column and/or switch at some time, or whether the manufacturers use a standard tail and just cut the unused wires off (there is no spare contact on the switch for this wire) I don't know. Update: The purple/pink is standard on all switches for this type of column i.e. all RB cars but there is no corresponding wire in the harness-side of the UK multi-plug.

I don't want to cut the lock assembly off the column (the shear bolts have sheared off), so wonder if I can remove the upper half of the shaft from the outer. This may allow me to see what is happening with the column lock, and possibly free it up if it isn't broken. I espy a circlip quite deep inside top of the outer, and manage to get that out of its slot. My angled internal circlip pliers won't go in that far, but by using one leg of a straight external set to lift up one end, I can then get one leg of my angled internal pair in that, and shift the other end of the circlip with one leg of my external pair. The shaft with it's bearing can then move up and down a couple of inches, but something is stopping it coming out altogether. There is an alloy casting at the top of the tube, held on with three large pop-rivets. I'm guessing I could have drilled those out, and the casting would have come out allowing the upper bush and shaft out, but don't have any replacements that size so stop short of drilling them out. Oh well, it's not had a steering lock for my 16 years, I doubt it matters now. December 2014: It was only after replacing the steering lock on Bee that I suddenly thought that it was probably the steering lock that was holding the shaft in the outer, if I had inserted and turned the key it might have come free. However when responding to a BBS request about stripping these columns I mentioned that, but he had the same problem and didn't even have his lock fitted. end of update Incidentally, the fact that the upper part of the shaft is retained in the outer this way, means that hammering on the end of the column to free the steering wheel, especially if your knees are braced behind the wheel, means that you are highly unlikely to break the shear pins, much less collapse the column. It's more likely to be a problem at the other end if you have to hammer or lever the UJ back on if the splines are stiff, but even then there is a strong spring pressing the lower shaft downwards, the same principle as bracing your knees behind the wheel.

  December 2017: John Bilham had to go through a similar process when installing PAS but was more persistent than I was. He writes:

Unfortunately the kit was supplied with an earlier modified steering column (presumably pre 410000, BHH1596, mine's an ex-US '77 Roadster, BHH1856). The only problem this presented me with was the difference in the aluminium bearing carrier at the steering wheel end - mine has a smaller diameter section where the switchgear sits. Rather than send the whole thing back for a replacement (I live in France) I decided, after a conversation with the vendor, to swap the bearing carriers.

I decided to remove 'my' bearing carrier first, so drilled the heads off the three rivets hoping to just slide it off the column. That didn't work, but on closer inspection I noticed that in addition to the large inside circlip which retains the bearing (I wasn't going to remove the bearing itself), there was another small outside one sitting on the shaft in front of the inner ring of the bearing. When I removed this the carrier and bearing slid off. Looking at the exposed shaft, there is the slot for the circlip, then a rubber oil seal, similar to that on a valve stem, that the bearing sits on, and then what looks like another slot, although it's difficult to see.

When I drilled the heads off the rivets on the other, supplied, column, the carrier moved a few mm but wouldn't slide off. This column has the large inside bearing-retaining circlip but not the outside one on the shaft. I then realised the heads had come off but the rest of the rivets had remained in place and these were obviously catching on something hidden on the column. They couldn't have been very tight because they just rotated with the drill bit, and were still long enough to almost touch the shaft. Took enough off them to allow them to fall out and the bearing casing just slid off. This revealed an outside circlip similar to mine, but this was sitting behind the bearing (which was what the remains of the rivets were snagging on) but with a similar oil seal in front of it.
Mystery 1 is why one column had the outer/shaft circlip behind the bearing and the other in front. Mystery 2 is why there is not an outer/shaft circlip on both sides of the bearing. My upper shaft (when the inner was not fitted) would not move either up or down inside the column outer while the bearing was retained by the inner/housing circlip. Both of John's bearings and housings slid off his shafts, so were not a press-fit. Assuming mine (being the same as one of John's) was not a press-fit either, what stopped that moving downwards in the column outer unless it was a second outer/shaft circlip on the steering-wheel side of the bearing?

Further investigation by John (more than he needed to do for installing his PAS for which I'm grateful) dismantled the bearing housing into housing, bearing, shim and circlip and revealed all, click the thumbnail.


Subsequently John writes:

I then discovered that the new steering column was also 10-15mm longer than mine, taking it beyond the range of adjustment provided by the brackets that it bolts to under the dash, and I am currently working on this. It also jeopardises the position of the column vis-à-vis the column down to the rack (they are too close). The end of the new steering column, where it passes through the firewall, is now supported by a swivelling bearing housing, seemingly to compensate for the absence of the third column support under the dash, to provide adjustment when aligning the column and the rack’s column, at the u/j. The three holes in the housing, however, do not align with those in the firewall and the captive nuts beyond, and would need to be bigger anyway to provide some adjustment. So far I have drilled them out sufficiently to align with the holes in the firewall, and may well need to make them even bigger to provide adjustment when I come to fit the u/j.

But back to the repair ...

... and to somehow join the two halves of the inner shaft back together. They are sort of rectangular section where they slot together (to guarantee still being able to steer even if the pins shear!), which has to have some clearance of course. There are holes in the outer, and a 'waisted' section under each hole in the inner. Plastic/nylon is injected through the hole on one side, filling the waisted sections and the gap between the two halves of the shaft, and exits from the hole on the other side. The broken ends of the shear pins came out of the lower half of the shaft easily enough, and the moulded inserts can be eased off the upper half. Whether the moulding around the waisted section always compresses over time to give some play, or whether mine only had the play because the pins had sheared I don't know. I decide to leave the remains of the injection moulding in place as removing them could introduce even more play, but need to pin the two halves of the shaft together. I can see where the pins have sheared off, so mark this position on the outer casing, then slide the lower half of the shaft over the upper until the holes in the outer line up with my marks, i.e. they are over the middle of the waisted sections. I use the holes in the outer as a guide and drill through the inner, so I can insert a pin all the way through.

I decide to slather some Araldite under and round the two halves of the nylon insert, and inside the holes in both upper and lower sections, so that when the lower half is pushed back over the upper that, and a pin through the hole, should hold the two halves together and take out the rotation play between them. Some people have said they used a hot-glue gun to replace the nylon shear-pins, but as described above there is a strong spring trying to pull the lower half of the inner out of the bottom of the outer, but the upper half of the inner is retained by a bearing at the top of the outer, so the force of the spring is being exerted on the repair. I use a metal pin in each position, not being bothered about changing the collapsible characteristics after all these years, you do this drilling and pinning at your own risk! Note that the two halves of the shaft will fit together in two positions 180 degrees out. Oddly both my rack and column shafts have notches for the UJ bolts rather than one shaft having a notch and the other a groove all the way round, so my column and rack shafts will only connect in one position, which means if I reassemble the column shaft 180 degrees out the indicator cancelling cam will end up in the wrong position (as it would if you had a shaft with a groove, match-marked it, and reassembled to that). No big deal as it is only a friction fit on the shaft and can be slid round, but nicer to get things correct in the first place.

Leave that to set a bit and start tidying up the wiring, which basically consists of putting bullets back on the ends of the original brown wires in the harness and ignition switch tail. However as I have no less than four additional circuits that need to connect back to this brown, rather than have a veritable daisy-chain of bullet connectors I splice three of them together with one bullet (two have in-line fuses close by and the third connects to a relay with a spade also close by, so easy enough to isolate each of them for diagnostics) and use the fourth hole for the alarm wire as that goes across the car to the alarm unit in a mini-harness. Turn the power back on and check everything electrical still works, even though the switches are still dangling, and the horn button is removed with the wheel. It's while doing this I discover a thick washer on the carpet, same size as the three that are still on the upper bolts - wonder where that came from...

I then start thinking about the pesky bottom spring and circlip. As I said it is pretty hefty, and just with hand pressure I can't get it compressed far enough to get the circlip on - nowhere near. I'm thinking I'm going to have to lever it down with something, but it will have to be pretty thin as there is going to be very little room to fit the circlip in its slot. I find some flanged plates about 8" by 2" from my BT days some 30 years ago (!) which may be strong enough. I cut a hole in this plate, which just fits over the end of the part of the shaft the circlip fits into, which is narrower than the part that the spring and a washer fits over. As I've only got two hands I stand the steering wheel end of the column on a suitable block of wood, put one end of my plate under the edge of my bench, and press down on the other end of the plate with a hand. It's compressing OK, but the problem is the washer is catching on the shoulder of the shaft, and as I'm levering rather than a straight press it is proving impossible to keep this washer aligned with the larger diameter it is supposed to go over while I'm levering. Go and gaze at my various bits again, and see an old box plug spanner which looks interesting. I'm amazed to discover this just fits over the narrower part of the shaft, and also just fits inside the washer and spring, so perfect for aligning the washer with the thicker part of the shaft! So now I put the box plug spanner through my plate, put the washer and spring on the end of the box plug spanner, and slide that lot over the end of the shaft. Now levering on the plate pushes everything over the larger diameter, and I remove the box plug spanner to reveal the circlip slot - so far so good. However it's still a bit of a fiddle picking up and manoeuvring the circlip one-handed while pressing down on my lever with the other, so I devise a system of string and a tommy bar (from the same plug spanner!) to pull the plate back and compress the spring while the column is clamped in the vice, and I have two hands to fit the circlip. Easy-peasy? - er no. Of course I have forgotten that the circlip is now trapping the plate! But filing the hole in the plate out to a 'keyhole' shape slightly larger than the circlip, but still smaller most of the way round than the washer, I can now fit the circlip into its slot, and lift the plate off over it. Feel thoroughly pleased with my ingenuity, and life-long policy of never throwing anything away - "If you haven't found a use for something yet, you haven't kept it long enough". In fact I have had a major clear out of the garage recently as we are planning to move house this year, but obviously kept enough of the right bits! Finally reattach the plastic cover over the mesh section of the outer, taping it up with masking tape while the adhesive dries.

 

And now for the refitting and alignment! There is a small ring welded to the outer tube, which the loose plate butts up against, so I wondered if it should be attached to that, although there was no sign it had been. However that puts the plate about 1/2" away from the toe-board which obviously isn't right. And with this column unlike earlier types the inner is fixed in the outer and cannot move up and down, only rotate, so the whole column has to be able to move up and down to get the right distance from the rack shaft so the UJ bolts will fit through the cut-outs in the shafts. Although some have said this bottom plate is part of the alignment, pushing the bottom of the column into the correct position, I've come to the conclusion it is nothing more than a body seal against water, noise and fumes. Two people have confirmed that theirs is also loose and detachable (making it odd that Moss Europe at least show it as part of the column), and another has said the same and that he has a rubber bush, that slides onto the lower part of the column outer, and makes a snug fit to the hole in the plate.

August 2016: That makes more sense, and Moss Europe have a closeup of this plate and the rubber seal, where part of the seal pushes through the hole in the plate. However they show the seal having been slid onto the column first, then the plate. As there are bolts that go through the plate, seal and toe-board one would expect the seal to be sandwiched between the plate and the toe-board, i.e. the plate pushed on first, and the seal after it. When the column and rack-shaft have been correctly aligned over-size holes in the plate and/or toe-board should allow bolts to be pushed through and tightened to provide clamping, but not alignment. In practical terms it was easier to loosely bolt the plate and seal to the toe-board first, then push the end of the column through the hole, rather than slide the plate and seal onto the column, put it in position with at least one upper bolt, then try and get the plate bolts in - the top one in particular is a real fiddle but all are more difficult that way. Now the seal and plate are positioned laterally and vertically by the column, and when the plate bolts are tightened it compresses the rubber such that it expands sideways and seals to the column shaft, as well as being bolted down to the toe-board, to prevent the ingress of water.

Another thing concerns the alignment gauges. The book says to remove the rack, even when it is the column that is being refitted. You do have to remove the rack later on, but there is no point doing it now only to have to refit it, then remove and refit it a second time later on. If using the Moss gauges these have two tapped holes depending on which rack and column they are used for. Compare the gauge to the UJ, position the tip in line with the centre of the UJ, and see which hole in the gauge lines up with the clamp bolt hole in the UJ, and put the clamp screws in those holes. Note that each part of the Moss gauge seems to be a couple of milli-metres shorter than the rubber bumper UJ (not so the chrome bumper), so bear this in mind when doing the alignment i.e. leave a couple of mil between the points or you may not be able to get both UJ clamp bolts in right at the end (alternatively, fit the UJ first, nip up the column bolts to get the correct in and out adjustment, then pull the rack forwards to replace the UJ with the gauges and note the gap between the tips, if any. When you have corrected the column and rack shimming for horizontal and vertical alignment make sure you end up with that same in and out gap). Apart from that when refitting a column it's easier to fit the alignment gauges first, minus the screw in the column piece. Then fit the column loosely, the alignment gauge easily goes through the toe-board plate and seal, and then fit the screw to the column half of the gauge. This is a bit fiddly being recessed into the toe-board 'cup' as it is but can be done. It would be easier with a knurled bolt, or even a hex bolt, or if the screw could be pushed in to the hole a little way before the threads started. Note that the screws must screw into the bottom of the cut-out in the shafts, not onto the splined portion. My Haynes is completely wrong here, by saying the rack and column should be fitted before installing the alignment gauges. This simply cannot be done, the two have to be moved apart a couple of inches to get the gauges onto the shaft, and off again to refit the UJ. With the gauges on adjust the column position and the shims as above to get the correct alignment. However my Leyland Workshop Manual also has a major error, in that it tells you "Slacken the screw on the column point gauge and slide the gauge down until the points of both gauges are on the same plane but not overlapping". The whole point of the gauge screws with this column is that they must screw into the cut-outs in the shafts, and the whole column must be slid up and down to get the correct in and out position. Unless you do this it is highly likely that you will not be able to get the second UJ clamping bolt inserted, the cut-out in the shaft not lining up with the hole in the UJ. This isn't the case with earlier columns, where the whole inner shaft is free to slide up and down inside the outer, with those the shaft will automatically take up the correct position. I repeat, with this later energy-absorbing column you can only adjust the in and out position of the inner, and hence get the cut-out in the correct place for the UJ, by moving the whole column on its upper bolts (which is also why the toe-plate must be able to slide up and down on the column outer).

Additionally at the end of the process i.e. with the gauges replaced by the UJ, it tells you tighten the two upper bolts, then measure the gap at the third bolt, and fit shims accordingly. This makes no sense to me, as the gauge of the correct size would have to be gripped by almost the same tension as the final shims which is 12-17 ft lb as you were sliding it in and out. Better to align, fitting shims as required to the third bolt and tightening all three to get the correct alignment while the gauges are still on the shafts. More long-winded certainly, but it seems more accurate to me. The two upper column bolts do not allow the column to 'rock' on them when tightened, so unless the shimming required on the third bolt is negligible to nothing then there must be some sideways pressure on the UJ and hence the rack pinion bearing. If you shim the column to that final position, then the two shafts will not be accurately aligned. When the column and rack shafts are correctly aligned with the gauges, only then pull the rack forwards to remove the gauges, fit the UJ, and refit the rack. Unlike the column, the rack (with any shims) should always go back in the same position. Whereas if you are only fitting shims to the third column bolt and fully tightening that after the UJ is installed, you could be affecting the vertical alignment, and indeed would have to lever the bottom of the column downwards in order to get the shims inserted. This is why it makes more sense to fit the gauges before installing the column, leaving the rack where it is until the very end of the process, only then pulling the rack forwards to remove the gauges and refit the UJ. Note that if you raise the front wheels off the ground you only have to remove the four rack bolts, leaving the track-rod ends attached to the steering arms. As you pull the rack forwards a few inches to allow you to remove the gauges and fit the UJ, the wheels will simply go 'pigeon-toed' i.e. turn in towards each other.

Refit rack bolts, tighten UJ clamp bolts, refit switches. Check all the electrics again, which involves putting the key in the ignition, and immediately sense that it is now closer to the bottom of the dashboard than it was before. I now realise what that odd thick washer was - it must have been between the column and body brackets on the right-hand bolt which would space that side down a bit - buggah! To fit it now would involve realigning the column. Consult the workshop manual to find something I missed before, that there should be such a spacer on all three upper column bolts! Indeed six shown in the Leyland Parts Catalogue, but only three in online parts lists. However the manual talks in terms of "if the packing washers are mislaid" so it is probably no big deal, and I can live with it until I next have to remove rack or column. Refit the column cowls before the steering wheel as it is easier, and if the lower cowl screws (covered by the edge of the dashboard) were fitted before don't bother refitting them, they just aren't needed. If you haven't upset the positioning of the indicator cancelling cam, and it was correct to begin with (cam pointing at the switch when straight-ahead), then loosely refit the steering wheel to turn the shaft to the straight-ahead position, then refit the wheel fully. Otherwise fit it with the nut not fully tightened, take it to a quiet straight road close by (not 10 miles away!), and adjust as required. Take your socket etc. with you so as to fully tighten it before driving back, so you can take the scenic route and enjoy getting your car back on the road again. The rattle-free steering really is an improvement.

Steering Column Universal Joint Added August 2010

Lubrication
Replacement
Alignment

Note that chrome bumper UJ consists of separate yokes, spider and bearings (needles in a cup) and the spider and bearings can be replaced using the existing yokes. For rubber bumper cars the overall UJ is smaller which precludes component replacement and it has to be replaced as a complete assembly. The RB and V8 UJ is recessed further into the bulkhead than CB, possibly because of a repositioning of the rack on the crossmember. I don't know if it applies to all rubber bumper cars, or just to V8s, but there is an oddity in the splined shafts that go in the UJ. On the roadster the column shaft has a notch for the clamp bolt meaning it can only go in the UJ one way, and the rack shaft has a groove all the way round meaning it can go in the UJ in any rotational position. This means the two shafts can be assembled in as many different relative positions as there are splines as on the roadster. However on the V8 both column and rack shafts only have the notch, which means the two shafts can only ever be in one relative orientation.

Lubrication:

That gives me time to ponder the issue of the grease nipple. The supplied nipple is an angled one, and is in two parts i.e. a straight nipple screwing into an angled base. With the steering turned to the appropriate position the nipple is pointing straight up, so easy to get a 6mm socket on to unscrew it from its base, which I had previously screwed in to the tapered threads so as to position the nipple between the two yokes. I have the idea of making an adapter by finding a bolt that screws into the nipple base, drilling a hole through that, cutting the head off, then drilling and tapping a straight standard nipple to screw on to the bolt. The first brass bolt I find in my box of bits screws into the nipple base. It's a bit loose as the threads aren't the same but should be OK as I only intend to use it for greasing, replacing it with the under-sized nipple between services. The bolt has a 3BA thread, so I drill and tap the standard-sized nipple right the way through (it doesn't need the ball and spring to keep dirt out as it isn't staying on the car) making it easier to clear out swarf afterwards, and I pump a little grease through the assembled nipple and adapter stud just to make sure they are clean. Unscrew the under-sized nipple, screw in my adapter, pump grease gently until some issues from the cups, and none comes from where the adapter screws into the nipple base, which I reckon is a pretty good result! Finally unscrew the adapter and refit the under-sized nipple (which still has its ball and spring to keep dirt out of course). All I have to do now it put the adapter in a small poly bag and keep it somewhere I can find it at the next service ...

Replacement:

Bee had advisories on both track-rod ends this year. Having a quick look the boots had split on both, and the pin on one was loose in the body so I'm surprised it wasn't a fail. But while checking those I became aware of slop in the column UJ (again!) and that is usually a fail. This will be the fourth replacement, the first (July 1997) failing at the next MOT as the cups were loose in the yokes, but I got a 50% refund on those. The second replacement (July 1998) lasted about eight years and 20k, this one (bought June 2006) six years and 12k. Thinking it could be column and rack alignment, my previous attempts being done with wire pointers as above, and having recently found Moss UK have the alignment gauges, I get the UJ (August 2012), track-rod ends and gauges from Moss.

The UJ change was a fairly straightforward operation - remove the four rack bolts, pull it forwards about an inch or so (the wheels will toe in) and with the column shaft pulled back (early collapsible column inners move in and out a couple of inches) there is enough room to get the UJ assembly off the shafts. Circlips removed and tapping the yokes knocks the cups out, but the new ones need the big vice to press them in, so no problems of them being loose next year! I then go to grease it using the supplied nipple and find it is smaller than standard, so my grease gun doesn't fit. The tapping in the UJ body is also smaller than normal so a standard nipple won't fit that either. Eventually I sort out a solution but in the meantime get on with checking the alignment of the column and rack shafts.

  October 2018: Returning from The Beacons Run in Bee 'at speed' I'm aware of a slight vibration from the steering wheel - but nowhere near as bad as when the V8 wheels were unbalanced - and investigating shows there is slop in the UJ - again, after six years and just 10k, and despite this one having a grease-nipple I've lubricated each year, so yet another replacement needed. By contrast the different design on Vee - despite 100k with me quite a few of which with significant wheel imbalance and wobble - is the one that came with the car. Replacements can be very variable in price - anything from £8 to £16 from the usual suspects plus eBay. Delivery can be anything from £0 to £11 with some sources having a low item price but high delivery cost, so you need to look at the total price when making a decision. Before replacing that (the fifth replacement!) I got the front wheel balance checked.

Alignment: July 2008

It is vital to get this correct or you will get rapid wear of the UJ and rack pinion bearing and possible breakage of the pinion shaft. Play in either is a UK MOT failure, but note that a certain amount of rotational play in the collapsible steering columns themselves is acceptable (my Toyota Celica manual quotes 1/4" at the rim, for example, which is about what my V8 has, but I have had to replace the UJ on the roadster a couple of times even though it only had barely detectable play).

The objective is to get the centre-line of the rack shaft crossing the centre-line of the column shaft at the exact centre of the UJ. It is achieved by shims between the four rack to cross-member mounting points, together with positioning of the steering column within the movement of its mounting bolts. It is necessary because the rack and column shafts sit at different angles in both the vertical and horizontal planes, as well as manufacturing tolerances in the bodyshell and crossmember. The factory used this tool (click thumbnail), note that the different bores were probably because it was a standard tool across a range of BL vehicles, although there are different lengths of chrome and rubber bumper MGBs of which more later. Highly unlikely to be available now, so how do we replicate it? Personally I wrapped some stiff wire around the end of each shaft, with the tip of each wire at a point in space equal to where the centre of the UJ would be when fitted to that shaft. You can get the tip exactly on the centre line by rotating each shaft in turn, if you get any wobble of the tip it isn't aligned, so tweak it until it is stable. Then it is a matter of fitting shims and adjusting the column as required to get the two tips just touching, which could be quite a long process of trial and error. Others have said they used blobs of Blu-Tak or similar. The problem with both of these is that it is very easy to knock the tip of the wire or Blu-Tak off-centre as well as length. Some have said they loosely fit the rack, connect up the UJ, then measure the gaps between the rack casing and the crossmember and fit shims accordingly. Personally I don't think that is good enough on its own as the weight of the rack will be hanging on the UJ to some extent, although it is probably good enough to get a starting point for shims, and trial and error with pointers after that for fine adjustment. Update January 2010: Even worse is a method I've seen where someone turns the steering wheel back and fore while someone else tightens up each rack bolt bit by bit, till the steering wheel binds, then that bolt is slackened a bit, a section snipped out of a washer so it can be slid on the bolt, and that bolt tightened. That is so crude, the UJ will surely start binding way before you can feel any resistance at the steering wheel, hence still be binding when it is backed off a bit and the washer tightened. Besides which the washers that were shown were way thicker than any shim I have seen. Definitely from the "If it isn't bodged it won't work" school of engineering.

Updated January 2011:

Note that the early and intermediate columns (all Mk1 cars, and non-North American chrome bumper cars except V8s) had a different mounting arrangement to the final full energy-absorbing column. The early and intermediate columns have two sets of brackets under the dash which can be used to alter the column position both vertically and horizontally.

The later energy absorbing column has one bracket under the dash with three bolts, and the bottom of the outer tube has a loose plate with three bolts screwing it into the firewall. It's been said that this bottom plate and its bolts are to align the column but that is not the case. They simply clamp the loose plate on the bottom of the shaft, via a gasket, to the toe-board and are solely to seal the body aperture against water, noise and fumes ingress. All the alignment must be done by sliding the column on the upper three bolts for in and out adjustment, swivelling it sideways for horizontal adjustment, and by shims between the column and the body bracket, and the rack and the cross-member brackets as required, to get the correct vertical alignment. It's only when alignment is complete you tighten the toe-plate bolts. With all columns if you remove or alter the column even if you haven't altered the rack you will need to recheck the column alignment before tightening the column bolts. Note that for the earlier columns the inner shafts are free to slide up and down and will automatically take up the correct position when the UJ clamp bolts and rack mounting bolts are inserted. This is not the case for the later energy-absorbing column, where its in and out position must be carefully set with the gauges, in order to get the correct spacing of the shaft cut-outs, so that the UJ and rack bolts can be refitted.

As far as using gauges goes my Haynes is completely wrong here, saying as it does that the rack and column should be fitted before installing the alignment gauges. This simply cannot be done, the two have to be moved apart a couple of inches to get the gauges onto the shaft, and off again to refit the UJ. With the gauges on adjust the column position and the shims as above to get the correct alignment. However my Leyland Workshop Manual also has a major error in the section for the later energy absorbing columns, in that it tells you "Slacken the screw on the column point gauge and slide the gauge down until the points of both gauges are on the same plane but not overlapping". The whole point of the gauge screws with this column is that they must screw into the cut-outs in the shafts, and the whole column must be slid up and down to get the points to just touch. Unless you do this it is highly likely that you will not be able to get the second UJ clamping bolt inserted, or the rack bolts refitted, whichever you do last. This isn't the case with earlier columns, where the whole inner shaft is free to slide up and down inside the outer. With those the shaft will automatically take up the correct position. I repeat, with the later energy-absorbing column you can only adjust the up and down position of the inner, and hence get the cut-out in the correct place for the UJ, by moving the whole column on its upper bolts (which is also why the toe-plate must be able to slide up and down on the column outer). It also tells you to fit the rack after the column, and after the gauges have been fitted. Ok if you have both off, or just the rack, but not if you have only had the column off. It makes more sense to fit the gauges before the column is reinstalled, rather than fit the column, pull the rack, fit the gauges, refit the rack, align, then have to pull and refit the rack again in order to remove the gauges and fit the UJ. Additionally towards the end of the process it tells you to replace the gauges with the UJ, then fully tighten the two upper bolts, then measure the gap at the third bolt, and fit shims accordingly. This makes no sense to me. Better to align, fitting shims as required to the third bolt and fully tightening all three to get the correct alignment while the gauges are still on the shafts. And only then pull the rack forwards to remove the gauges and fit the UJ, and refit the rack. Unlike the column, the rack (with its shims) should always go back in the same position. Whereas if you are only fitting shims to the third column bolt and fully tightening that after the UJ is installed, you could be affecting the vertical alignment. This is why it makes more sense to fit the gauges before installing the column, leaving the rack where it is until the very end of the process, only finally pulling the rack forwards to remove the gauges and refit the UJ. Note that if you raise the front wheels off the ground you only have to remove the four rack bolts, leaving the track-rod ends attached to the steering arms. As you pull the rack forwards to allow you to remove the gauges and fit the UJ, the wheels will simply go 'pigeon-toed' i.e. turn in towards each other. However I have found that with the earlier columns where the inner will slide up and down relative to the outer, it is possible to withdraw the inner enough to remove both parts of the gauge, which means you don't have to disturb the rack. As mentioned above it is the position of the rack and the fitting of the UJ that determines the final position of the column inner relative to everything else.

Some time later I came across a web page by Simon Jansen in New Zealand who had fabricated his own alignment tool and gave the dimensions he used, see here and scroll down to January 2006. This topic comes up on mail lists and BBs from time to time and I had posted links to Simon's site. Recently someone came back querying the 29mm dimension from the centre of the notch in the shafts and the tip of the tool, saying his was more like 33mm. I passed this on to Simon, and he said it was possible as his car was a mish-mash of components as it was a conversion from rubber bumper to chrome and from LHD to RHD. I measured a new RB V8 UJ as carefully as I could and also came up with 33mm, with 45mm for my chrome bumper roadster (measured on car) and posted this as a warning with the link I already had on this site to Simon's page.

Some time after that Kelvin Dodd of Moss US posted this link to a replica tool available from Moss. It's curious that it seems to come with two sets of screws, as it would need two sets of holes to be suitable for both chrome and rubber bumper cars, which would need only one set of screws. I asked Kelvin if could confirm whether there were one or two sets of holes, and what the distances to the tips were. He came back with the information expressed slightly differently as being an overall length of 2.11", one hole 0.336" from the open end, and another hole 0.936" from the open end. The bore is 0.744+-0.005/0.002" or 18.9mm (slightly smaller than Simon's 19.3mm), and the hole depth is 1.70". Converting this to distance from the tip and millimetres I get 1.174" or 29.82mm for one hole and 1.764" or 44.8mm for the other, and this is where it gets curious. The Moss 29.82mm is pretty close to Simon's 29mm, and the Moss 44.8mm is very close to the 45mm I measured on my CB roadster. However my RB V8 UJ measures 33mm, which is the same measurement that the person who queried Simon's dimension in the first place, and looking in the Parts Catalogue there are only two part numbers for UJs for all models, years and markets i.e. one for CB and one for RB.

So I've re-measured my new RB V8 UJ more carefully, and still get around 1.2415" which equates to 31.5mm, so the Moss 1.174" or 29.82mm remains a mystery (Simon's original 29mm less so as his car is much modified). If making a tool for yourself you will need to check your UJ dimensions very carefully.

Update March 2010: Just been made aware of the identical alignment tool at Moss Europe. The good news is that it is only £7.65 (£16.50 in Sep 2017) as opposed to $24.95 when the exchange rate is 1.5 i.e. $12 or £16! The bad news is that they insist on you ordering at least £10 of parts, before they tell you the shipping costs.

  Update August 2010:

I get the Moss gauges with a replacement UJ and track-rod ends, so measure them myself, at 44.58 for the CB and 30mm for the RB and all V8s. The latter UJ is 31.5mm, and as that column has a fixed shaft this means that a small gap has to be left between the tips otherwise you cannot get both clamp bolts through the UJ. Doesn't matter for the earlier columns as the inner slides in and out to suit. As I've got to change the steering column UJ, and the rack has to be pulled forward for that, it's a good opportunity to check the alignment at the same time (which is why I bought the gauges with the UJ ...).

The gauges are a nice snug fit on the shafts which is good, and one thumbscrew in each gauge going into the shaft groove holds them firm. The tips are about 1/8" out, part horizontal and part vertical, which could have contributed to UJ wear, but there is some up and down and side to side play in each shaft so the end result would have been not much by way of sideways forces on the UJ. I'll need to adjust the sideways misalignment at the column mountings, so I opt for seeing if I can get the vertical alignment corrected there as well, rather than fiddling with shims at the rack. This style of collapsible (not the later full energy-absorbing) column used on UK 72 and 73 models is supported by two body brackets, one up by the dash and another one further down under the shelf.

Both are slotted so each mounting can move up or down independently giving quite a large change in vertical position of the UJ end of the column shaft. I find the top can go up just a little bit and the bottom down, which puts the gauge pointers in perfect vertical alignment. For horizontal alignment the lower bracket has two bolts up through the heater shelf (with support clips for brake and clutch pipes and harness) and with the nuts slackened the bracket and hence the UJ end of the column can be moved from side to side. With this column the inner can slide up and down freely so you need to pull the wheel up a bit while moving the column, as if the gauge points overlap they will jam and possibly get damaged. Then it's unbolt the rack again and pull it forwards as before to remove the gauges and fit the UJ, lining up the splines by eyeballing the front and rear tyres each side to get to get the steering straight, then fitting the UJ with the wheel in the straight-ahead position, and finally bolt the rack back down. The UJ only attaches to the column shaft in one position as the cut-out for the clamp bolt is cut straight across, but the rack shaft is cut all the way round (oddly the V8 only has notches in both shafts). Really I should have put a paint-mark on the rack-shaft in line with the slot in the clamp before removal, but as I've got to change the track-rod ends as well and then get the alignment checked, it'll come straight in the end.